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Abstract 
Social scientists often estimate how actors respond to each other. However, data is usually aggregated 
temporally, into days, weeks, or years, when response occurs at higher frequency. How does temporal 
aggregation affect standard regression estimates? We show that studying interactions aggregated (or 
disaggregated) into predetermined intervals, rather than the actual response, can distort estimates, 
generating attenuation, amplification and even reverse signs. We provide analytic derivations, simple 
examples, and empirical Monte Carlo simulations. We conclude by examining how temporal 
aggregation can distort our understanding of the Israel-Gaza conflict from 2007 to 2017. 
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And have no doubt — we will hold all those responsible to account at a time and in 

a manner [of] our choosing. 

• Former President Biden discussing the United States’ response to missile 
and drone attacks targeting United States military installations resulting in 
three casualties (2024). 

1 Introduction 

How can a researcher estimate a country’s response to a recurring conflict (e.g. trade 

wars, cyber-attacks, rocket fire) using data which temporally aggregate actions into fixed 

time units (such as months)? Enders and Sandler (1993) provide one of the first applications 

using Vector Autoregressions (VAR), a flexible reduced form approach popularized within 

macroeconomics which relies on data recorded at fixed units (e.g., years, quarters or 

months). Researchers have since applied VAR to many strategic settings, including 

Israel/Palestinian conflicts (Jaeger and Paserman 2008; Haushofer, Biletzki, and Kanwisher 

2010), politicians’ campaign strategies (Box-Steffensmeier, Darmofal, and Farrell 2009), 

political-media interactions (Barberá et al. 2019), and more recently Myanmar state violence 

(Davis, Paula Lopez-Pena, and Wen 2023). In these settings players choose both how and 

when to respond to each other. That results in irregularly spaced responses which are 

oftentimes aggregated to some arbitrary time interval, like a day. Yet in a single day multiple 

responses and counter-responses could occur –so that aggregation might conflate them.  

A useful distinction in this setting is between calendar time –measured in units of fixed 

duration (e.g., days) and action time, which records when actions occur, their magnitude, and 

duration. For example, an evening action might respond to an afternoon action, but last past 

https://bidenwhitehouse.archives.gov/briefing-room/statements-releases/2024/01/28/statement-from-president-joe-biden-on-attack-on-u-s-service-members-in-northeastern-jordan-near-the-syria-border/
https://bidenwhitehouse.archives.gov/briefing-room/statements-releases/2024/01/28/statement-from-president-joe-biden-on-attack-on-u-s-service-members-in-northeastern-jordan-near-the-syria-border/
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midnight.  We show that temporally aggregating such a sequence into daily data can cause 

misleading point estimates and distorted inference in VAR analyses. 

We first motivate our findings using data recorded at high frequency (five-minute 

intervals) from the Israeli-Gaza conflict between 2007 and 2017. The conflict during this 

period is best described as partial deterrence: Israelis and Gazans launch violent attacks at 

one another, sometimes many times daily, but do not reach the level of war seen following 

October 7th, 2023. We highlight three facts from the data: i) sides tend to respond to attacks 

within a day, ii) violence tends to last only a few days with lulls of quiet between, and iii) 

sides vary their response time. We then estimate reduced form VARs and impulse responses 

functions (IRFs) at the daily level following Jaeger and Paserman (2008). That exercise 

reproduces results like those of Jaeger and Passerman on the Second Intifada period: our 

VAR and IRF analysis suggests long, drawn out responses lasting nearly 40 days –in 

contrast to fact (ii). 

Why does a VAR and IRF analysis produce prolonged responses when the data suggests a 

conflict defined by spats of violence between days of calm? We argue this can occur because 

of a temporally aggregated unit of observation. Strategic interactions can be thought of as 

sequential games,4 where each player performs actions (e.g. airstrikes, mortar fire) resulting 

in damages (e.g., casualties, property damage). Studying the problem at a predefined 

temporal level (e.g., day or week) can cause standard VAR modeling to estimate prolonged 

lag lengths, misleading point estimates and empirical responses. This distortion can result 

from actors strategically waiting different amounts of time to respond, or from actions 

 
4 Maskin and Tirole (1988) make a similar argument when modeling pricing strategies. 
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spanning temporal units (e.g., multiple days). For example, an airstrike is nearly 

instantaneous, but an incursion or barrage of rocket fire can last days. 

Put simply, aggregating (and disaggregating) the timing of behavior can create severe 

misspecification in VAR analysis. We analytically show that it can cause VAR coefficients 

to be attenuated, inflated, or even have the wrong sign compared to an action level analysis. 

We next develop a Monte Carlo simulation to examine the extent of distortion in data one 

might use. First, we generate data at the action level (e.g., action time), in which each side 

only reacts to the previous action (a Markovian game). We then aggregate that data into 

fixed time units observation (e.g., calendar time) and perform standard VAR and IRF 

analyses. VAR applied to that temporally aggregated data fails to estimate the parameters of 

the action-level parameters. The optimal Bayesian Information Criterion (BIC) lag length 

tends to equal the average response time between actions. The estimated impulse response 

functions also produce statistically significant effects for many periods into the future. 

Finally, point estimates are severely distorted compared to the action time parameters, in 

magnitude and statistical significance. 

We then revisit the Israeli-Gazan conflict and find signs that temporal aggregation 

distortions may be present and driven by multi-day actions. There is little evidence that 

strategic waiting is driving temporal distortions in this setting. However, there are multiple 

instances of Israeli and Gazan performing multi-day actions. These longer actions contribute 

to the prolonged impulse responses, and potential temporal aggregation distortions. Using a 

Markovian response function in action time, we can recreate daily Israeli impulse response 

functions that remain statistically significant at the 5% level over 10 days after the initial 
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shock. These results suggest that temporally aggregated units of observation may have 

contributed to previously drawn conclusions about the Israel-Gaza conflict. 

This paper is the first to study how strategic behavior and temporally aggregated 

observations may affect our understanding of the Israel-Gaza conflict. Previous work 

assumed a daily unit of observation (Jaeger and Paserman 2008), then proceeded to study 

different damage metrics (Haushofer, Biletzki, and Kanwisher 2010)5 and functional form 

(Asali, Abu-Qarn, and Beenstock 2017). We can go a step further and study how the 

temporal unit of observation affects empirical findings, using our high frequency data on the 

conflict. 

Our findings extend the temporal aggregation literature to the strategic setting. Previous 

econometric works focused on temporal aggregation distortions in nonstrategic settings, such 

as the association between economic indicators (Working 1960; Zellner and Montmarquette 

1971; Brewer 1973; Tiao and Wei 1976; Geweke 1978; Wei 1978; Freeman 1989; 

Marcellino 1999; Jordá 1999; Silvestrini and Veredas 2008). We extend this work by 

studying how temporal aggregation affects estimates of strategic behavior with observational 

data. Given researchers’ increasing access to high frequency data, we expect our findings to 

highlight an ever-growing issue in estimation. 

The remainder of the paper is organized as follows: Section 2 motivates the problem. 

Section 3 provides the economic setting and Section 4 analytically derives potential 

distortions from analyzing actions in time intervals. Section 5 presents a Monte Carlo 

simulation. Section 6 investigates how temporal aggregation may affect understanding the 

 
5 See Golan and Rosenblatt (2011) for a comment on this work. 
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Israeli-Gaza conflict. Section 7 concludes. 

 

2 Motivating example 

We first motivate our problem using data from the Israeli-Gaza conflict. Between 2007 and 

2017, the United Nations recorded casualties and munitions launched across the Israeli-

Gazan border at the five-minute level (Berman et al. 2024). We refer to one of the five-

minute reports as an attack. This includes injuries and fatalities on both sides. It also 

includes Israeli airstrikes, shellings, small arms fire, and incursions, and Gazan mortars, 

qassams, and small arms fire. 

Figure 1 plots the number of Israeli and Gazan attacks per day. The magnified portion 

highlights December 2013, a randomly chosen month. 
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Figure 1 Israeli and Gazan attacks per day 
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The daily data depicts prolonged violence with interspersed lulls of quiet. The grey bars 

highlight days in which neither Israel nor Gaza attacked. There were no attacks during about 

a quarter of the days in the sample. 

There are three takeaways from the graph. First, sides tend to respond to attacks within the 

same day. Over the full sample period, there were about 3.97 attacks per day, with no attacks 

on 24.5% of days and only one attack on 23.7%. There were on average 5.26 attacks per day, 

conditional on an attack occurring. 

Second, violence is interspersed between periods of calm. When an attack occurred, the 

violence ended within the day about half the time, followed by at least one day of calm. The 

median length of time preceding at least one day of calm was 0.8 days, which typically 

included three attacks. The longest stretch of continuous violence lasted 78 days; the second 

longest was 54 days; the longest stretch of quiet was just under 12 days. 

Third, the graph depicts both sides varying their reaction times. Israel reacted to the 

previous attack on average after 40 minutes while Gazan militants responded after about 50 

minutes on average. However, response times vary considerably: the Israeli response 

standard deviation is 0.62 days, and the Gazan is 0.49 days. Both sides reacted within a 

minute about 0.2% of the time, and Israel took longer than a day to respond 8% of the time. 

The Gazans did so 5% of the time. 

These takeaways highlight two challenges when using observational conflict data. First, 

daily data masks strategic behavior within days. More than one attack occurs over half the 

days in our sample, and nearly a quarter of the days have more than three attacks. Second, 

each side varies their response time. Israel and Gaza’s response time both have large 
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standard deviations, compared to their means. Statistical approaches that ignore this 

variation effectively average over the strategic response time. 

We next estimate impulse response functions employing the methods from Jaeger and 

Paserman (2008) using data from Berman et al. (2024). Following their work, we first 

temporally aggregate to the daily level. While Jaeger and Paserman (2008) focused their 

analysis on fatalities, follow-up work identified strategic behavior studying fatalities and 

projectiles (Haushofer, Biletzki, and Kanwisher 2010). Therefore, we combine casualties and 

munitions into one index by regressing fatalities + 0.8 × injuries on munitions (with no 

intercept) to create Israeli and Gazan expected damage metrics. Intuitively, the fitted values 

capture each side’s intended damage, measured in casualties. 

We then calculate the orthogonal impulse response function from a VAR with 14 lags.6 

Figure 2 plots the empirical response functions for Israel and Gaza with 95% confidence 

intervals. Each response maps 60 days after an initial attack. Israel appears to inflict damage 

above the mean for nearly 30 days following a Gazan attack. Conversely, the Gazan 

response is far more muted than the Israelis, with less damage and a shorter attack duration. 

In the online appendix, we show that damage to Israel (weakly) Granger causes damage to 

Gaza, but not the converse.  

 
6  VAR(14) has become the standard model specification for the Israel-Gaza conflict (Jaeger and Paserman 

2008; Asali, Abu-Qarn, and Beenstock 2024). See the appendix for the VAR estimates, and alternative 
outcome and model specifications. 
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Figure 2 Daily-level impulse response functions for Expected Fatalities 
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Taken at face value, the empirical response functions and accompanying VAR analysis 

suggest a long duration of response to a single attack, 30 or 40 days. Yet, 99% of violent 

episodes in the dataset last less than 30 days. On average, violence lasted 0.4 days before at 

least one day of calm. In the remainder of the paper, we investigate how strategic response 

time and temporal aggregation may cause VAR and impulse response functions to produce 

findings that appear inconsistent with features of the underlying data. 

 

3 Setup 

Section 3.1 introduces and extends the Berman et al. (2024) economic framework to 

repeated conflict and then maps it to estimating equations. Section 3.2 sets up challenges of 

studying conflict when the data is collected in predetermined intervals.  

3.1 Economic framework 

Berman et al. (2024) assumes players A and B are competing in a two-sided sequential 

game. For every turn 𝑖𝑖 = 1, … , 𝐼𝐼, players A and B alternate receiving damage, denoted as 𝑑𝑑𝑖𝑖𝐴𝐴 

and 𝑑𝑑𝑖𝑖𝐵𝐵 respectively. We refer to data organized by action as being in action time.7 This 

records damage inflicted per action, rather than traditional time (e.g., minutes, days, years). 

There can be a millisecond, day, or even a year between actions, and duration varies from 

action to action.  

 
7 Engle and Russell (2004) refer to this as “event-space”. 
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Responses are based on damage suffered: player A inflicts 𝑑𝑑𝑖𝑖𝐵𝐵 = 𝑅𝑅𝐴𝐴�𝑑𝑑𝑖𝑖−1𝐴𝐴 � on player 

B, and player B inflicts 𝑑𝑑𝑖𝑖𝐴𝐴 = 𝑅𝑅𝐵𝐵(𝑑𝑑𝑖𝑖−1𝐵𝐵 ) damage on player A. We model both player’s 

response curves as linear dependent only on the previous action:8 

𝑅𝑅𝐴𝐴�𝑑𝑑𝑖𝑖𝐴𝐴� = 𝑑𝑑𝑖𝑖𝐵𝐵 = 𝛼𝛼0𝐴𝐴 + 𝛼𝛼1𝐴𝐴𝑑𝑑𝑖𝑖−1𝐴𝐴 + 𝜖𝜖𝑖𝑖       (1) 

𝑅𝑅𝐵𝐵(𝑑𝑑𝑖𝑖𝐵𝐵) = 𝑑𝑑𝑖𝑖𝐴𝐴 = 𝛼𝛼0𝐵𝐵 + 𝛼𝛼1𝐵𝐵𝑑𝑑𝑖𝑖−1𝐵𝐵 + 𝜖𝜖𝑖𝑖       (2) 

where 𝜖𝜖𝑖𝑖 is conditional mean zero with variance 𝜎𝜎𝑖𝑖2.  

This approach to conflict provides unique escalation and deescalation estimation and 

hypothesis testing. A sequence of responses and counter-responses de-escalates if 

𝑅𝑅𝐵𝐵�𝑅𝑅𝐴𝐴(𝑑𝑑𝐴𝐴)� < 𝑑𝑑𝐴𝐴 and 𝑅𝑅𝐴𝐴�𝑅𝑅𝐵𝐵(𝑑𝑑𝐵𝐵)� < 𝑑𝑑𝐴𝐴, at a point (𝑑𝑑𝐴𝐴,𝑑𝑑𝐵𝐵). Researchers can study 

conflict stability, multiple equilibrium, and changes in strategy with this approach. 

The game’s sequential nature allows us to combine the two reaction curves into one 

using a player indicator. Let 𝑧𝑧𝑖𝑖 = 𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ). Then equations (1) and (2) can be 

equivalently written as: 

𝑅𝑅(𝑑𝑑𝑖𝑖|𝑑𝑑𝑖𝑖−1, 𝑧𝑧𝑖𝑖) = 𝑑𝑑𝑖𝑖 = 𝛼𝛼0𝐵𝐵 + (𝛼𝛼0𝐴𝐴 − 𝛼𝛼0𝐵𝐵)𝑧𝑧𝑖𝑖 + 𝛼𝛼1𝐵𝐵𝑑𝑑𝑖𝑖−1 + (𝛼𝛼1𝐴𝐴 − 𝛼𝛼1𝐵𝐵)𝑑𝑑𝑖𝑖−1𝑧𝑧𝑖𝑖 + 𝜖𝜖𝑖𝑖 (3)  

 

Leaders consider both how and when to attack. Timing therefore influences the 

decision process as well. Wait too long, and the antagonist may misinterpret the 

 
8 While we focus our attention on an AR(1) response curve, the framework can accommodate more lags, 
higher order polynomials, and moving averages. The AR(1) specification translates to a Markov one process 
mixed strategy employed in many sequential games, a common modeling choice outside conflict analysis 
(e.g., Noel 2007). 
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protagonist’s response for the beginning of a new conflict. Respond too predictably, and the 

antagonist can parry the protagonist’s response.  

Based on this observation, we allow each player to also choose the duration between 

the end of current and previous actions, denoted 𝑤𝑤𝑖𝑖  ≥  0. Let 𝑓𝑓𝑤𝑤(𝑤𝑤𝑖𝑖|𝑑𝑑𝑖𝑖, 𝑧𝑧𝑖𝑖) be the 

distribution between the ending of 𝑑𝑑𝑖𝑖−1 and 𝑑𝑑𝑖𝑖. Like before, we model Player A and Player 

B’s duration as one function with an indicator. 

The response curve and duration distribution combine to form the joint action 

distribution. We write the joint distribution using matrix notation, which will be used in 

following sections: 

𝑓𝑓(𝐷𝐷,𝑊𝑊|𝑍𝑍) = 𝑓𝑓𝑤𝑤(𝑊𝑊|𝐷𝐷,𝑍𝑍)𝑅𝑅(𝐷𝐷|𝑍𝑍) 

𝑅𝑅(𝐷𝐷|𝑍𝑍) = 𝑋𝑋𝐼𝐼𝛼𝛼 + 𝜖𝜖 

𝑋𝑋𝐼𝐼 = [1  𝐿𝐿𝐼𝐼𝐷𝐷  𝑍𝑍  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑍𝑍)𝐿𝐿𝐼𝐼𝐷𝐷]𝐼𝐼 ×4 

𝛼𝛼′ = [𝛼𝛼0𝐵𝐵  (𝛼𝛼0𝐴𝐴 − 𝛼𝛼0𝐵𝐵)  𝛼𝛼1𝐵𝐵  (𝛼𝛼1𝐴𝐴 − 𝛼𝛼1𝐵𝐵)]1 ×4 

𝐸𝐸[𝑋𝑋𝐼𝐼𝑋𝑋𝐼𝐼′] < ∞ 

𝐸𝐸[𝜖𝜖|𝑍𝑍, 𝐿𝐿𝐼𝐼𝐷𝐷] = 0 

𝐸𝐸[𝜖𝜖2|𝑍𝑍, 𝐿𝐿𝐼𝐼𝐷𝐷] = Σ 

where D, W, and Z are the respective vectors, 𝐿𝐿𝐼𝐼  is the lag matrix in action time,9 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(·) is a diagonal matrix with vector · along the diagonal, and Σ is a diagonal matrix. 

 
9 For those less familiar with the lag operator, 𝐿𝐿𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖−𝑘𝑘 for any variable.  
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This general framework follows a marked process, first popularized within financial 

econometrics by Engle and Russell (1998) and Engle (2000). The specification allows us to 

clearly highlight distortion caused from studying conflict at predetermined intervals.  

 

3.2 Actions recorded in calendar time 

Assume that a researcher observes damage to Players A and B at a specified time 

interval (e.g. days), which we call calendar time. Examples of calendar time include daily, 

weekly, and monthly data. Let dtA and dtB denote the damage that the researcher observes at 

period t = 1,...,T. As before, let 𝐷𝐷𝐴𝐴 and 𝐷𝐷𝐵𝐵  denote vectors with dtA and dtB the t𝑡𝑡ℎ  element. 

Assume that the researcher observes data at the same time-unit (e.g., a day) at which the data 

is aggregated. action time maps to calendar time by adding all the actions within that day 

together (mirroring Jordá (1999) and Jordá and Marcellino (2000)): 

𝑑𝑑𝑡𝑡𝐴𝐴 = �ℎ𝑖𝑖 ���𝑤𝑤𝑗𝑗

𝑖𝑖

𝑗𝑗=1

� ∈ [𝑡𝑡, 𝑡𝑡 + 1]� 𝐼𝐼(𝑧𝑧𝑖𝑖 = 1)𝑑𝑑𝑖𝑖
𝑖𝑖

 

(8) 

𝑑𝑑𝑡𝑡𝐵𝐵 = �ℎ𝑖𝑖 ���𝑤𝑤𝑗𝑗

𝑖𝑖

𝑗𝑗=1

� ∈ [𝑡𝑡, 𝑡𝑡 + 1]� 𝐼𝐼(𝑧𝑧𝑖𝑖 ≠ 1)𝑑𝑑𝑖𝑖
𝑖𝑖

 

The  ℎ𝑖𝑖 function captures how an action is distributed over days. If the action is 

instantaneous, such as an airstrike, then  ℎ𝑖𝑖() is the indicator function, equal to one the day 
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the action occurred and zero else. The action may be a prolong incursion, barrage or shelling, 

in which case the action is dispersed across days. 

Equation 8 can be rewritten in matrix notation. Let P be a T × I aggregation matrix with 

𝑝𝑝𝑡𝑡,𝑖𝑖  the [t,i] element of P. p𝑡𝑡,𝑖𝑖  captures the percent of action i that occurred on day 

t. The columns of P sum to one because every action is fully mapped to the days. 

Additionally, let 1 be a vector of ones, and diag(Z) is a square matrix with the Z vector 

along the diagonal. Then  

DA = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝐷𝐷 

and  

DB = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(1 − 𝑍𝑍)𝐷𝐷. 

We provide a simple example in the appendix. 

4 Challenges to VAR in calendar time 

A k order reduced-form vector autoregression is commonly applied to data in calendar time. 

The first equation in this example is: 

 𝑑𝑑𝑡𝑡𝐴𝐴 = 𝛽𝛽0𝐴𝐴 + ∑ �𝛽𝛽𝐴𝐴,𝑗𝑗
𝐴𝐴 𝑑𝑑𝑡𝑡−𝑗𝑗𝐴𝐴 + 𝛽𝛽𝐵𝐵,𝑗𝑗

𝐴𝐴 𝑑𝑑𝑡𝑡−𝑗𝑗𝐵𝐵 �𝑘𝑘
𝑗𝑗=1 + 𝜂𝜂𝑡𝑡  (9) 

In matrix form:  

𝐷𝐷𝐴𝐴 = 𝑋𝑋𝑇𝑇𝛽𝛽𝐴𝐴 + 𝜂𝜂 (10) 
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where 𝑋𝑋𝑇𝑇 is the design matrix composed of lagged damage and an intercept.  

How does 𝛽𝛽𝐴𝐴 relate to the reaction function parameters, 𝛼𝛼? Plugging Equation (2) into the 

standard regression formula and taking conditional expectations yields: 

𝛽𝛽𝐴𝐴 = 𝐸𝐸[𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇]−1𝐸𝐸[𝑋𝑋𝑇𝑇′ 𝐷𝐷𝐴𝐴] 

= 𝐸𝐸[𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇]−1𝐸𝐸[𝑋𝑋𝑇𝑇′ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝑋𝑋𝐼𝐼]𝛼𝛼 

Where 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝑋𝑋𝐼𝐼 = [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)1  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝐿𝐿𝐼𝐼𝐷𝐷  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝑍𝑍  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝐿𝐿𝐼𝐼𝐷𝐷] 

For convenience, let Υ = 𝐸𝐸[𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇]−1𝐸𝐸[𝑋𝑋𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝑋𝑋𝐼𝐼], and 𝜐𝜐𝑡𝑡,𝑘𝑘  be the [t,k] element of 𝜐𝜐. 

𝛽𝛽𝐴𝐴 equals 𝛼𝛼 if 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝑋𝑋𝐼𝐼 = 𝑋𝑋𝑇𝑇. Notice that 𝛽𝛽𝐴𝐴 equals 𝛼𝛼 when 𝑋𝑋𝑇𝑇  is a time-manipulation 

of 𝑋𝑋𝐼𝐼  during A’s turn. Examples of this include manipulating the data between monthly, 

quarterly, and yearly units of analyses (Zellner and Montmarquette 1971). 

This equality is unlikely to hold in most strategic setting because the action-time response 

curve may not follow the VAR timing of lags. In our setting, 𝛼𝛼 is four-dimensional while 

𝛽𝛽𝐴𝐴  is 2𝑘𝑘 + 1. Rather than mapping directly to the reaction curve parameters, the VAR 

parameters are a linear combination of 𝛼𝛼 scaled by 𝛶𝛶. 

We’ll focus for a moment on the intercept to solidify ideas. Let 𝜄𝜄𝐼𝐼  be an I-length column 

of ones, the first column in 𝑋𝑋𝐼𝐼. Similarly, let 𝜄𝜄𝑇𝑇  be a T length column of ones, the first 

column in 𝑋𝑋𝑇𝑇  . If 𝜄𝜄𝑇𝑇  =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝜄𝜄𝐼𝐼, then (𝑋𝑋𝑇𝑇′  𝑋𝑋𝑇𝑇 )−1𝑋𝑋𝑇𝑇′  𝜄𝜄𝑇𝑇  equals a T length vector where the 
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first element of the vector equals one and all else are zero. Only 𝛽𝛽0 is a function of 𝛼𝛼0 

because all the other elements are zero. Suppose instead that player A performs 𝛾𝛾 actions 

each period. Mathematically, 𝜄𝜄𝑇𝑇  =  𝛾𝛾𝜄𝜄𝐼𝐼. The action-space intercept still only contributes to 

the time-space intercept because only the first vector’s element is nonzero. However, 𝛽𝛽0𝐴𝐴  =

 𝛾𝛾𝛼𝛼0 to account for the multiple actions per period. 

Suppose instead that 𝜄𝜄𝑇𝑇 ≠  𝛾𝛾𝜄𝜄𝐼𝐼. This occurs when side A performs a different number of 

actions each day. Now, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝜄𝜄𝐼𝐼  is no longer guaranteed to be a column of 𝑋𝑋𝑇𝑇. The first 

element of (𝑋𝑋𝑇𝑇′  𝑋𝑋𝑇𝑇 )−1𝑋𝑋𝑇𝑇′  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝜄𝜄𝐼𝐼  need not equal one, nor do the other elements need not 

equal zero. Every element of 𝛽𝛽𝐴𝐴 can be some linear combination of 𝛼𝛼0 since none of the 

(𝑋𝑋𝑇𝑇′  𝑋𝑋𝑇𝑇 )−1𝑋𝑋𝑇𝑇′ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝜄𝜄𝐼𝐼 elements are guaranteed to equal zero. All the time-space 

coefficients may be a function of the action-space intercept and number of actions per day 

because of Player A’s strategic responses. 

4.1 Illustration 

In this section, we illustrate how VAR analyses using calendar time data may be 

misleading. We assume that each side’s strategic response follows an exponential 

distribution, both sides react symmetrically to one another, and each action occurs 

instantaneously: 

𝑤𝑤𝑖𝑖|𝑑𝑑𝑖𝑖, 𝑧𝑧𝑖𝑖 ∼ exp(1) 

𝑑𝑑𝑖𝑖|𝑧𝑧𝑖𝑖,𝑑𝑑𝑖𝑖−1 ∼ 𝑁𝑁(𝛼𝛼0 + 𝛼𝛼1𝑑𝑑𝑖𝑖−1, Σ) 

ℎ𝑖𝑖(∗) = 𝐼𝐼(∗) 
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where 𝛴𝛴 is a diagonal matrix. In this simple example, each side has the same waiting and 

response function with an idiosyncratic error. We drop the 𝛼𝛼 superscripts for ease of reading. 

The econometrician observes data at the calendar time, as in Equation 8. They then 

estimate the VAR following Equation (10) with 𝑝𝑝 =  5. This guarantees that each side’s 

reaction is always captured in the VAR lag structure. We present VAR estimates for side A 

below:  
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Figure 3 Player A VAR slope estimates and 95% CI under different action time response 

curves. 
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Figure 3 plots VAR estimates under three sets of parameters for the action time response 

function, (𝛼𝛼0,𝛼𝛼1). The three panels highlight three potentially misleading findings from a 

calendar time VAR analysis. In Panel A, the first three lagged estimates for side B are 

statistically larger than the action-level slope coefficient, 𝛼𝛼1 =  0.1. We refer to this as 

amplification. Panel B shows the opposite effect: the VAR coefficients are all smaller than 

the true reaction curve slope (again 𝛼𝛼1 =  0.1). We refer to this as attenuation. Finally; Panel 

C shows an example where the time-space slope coefficients for side B are all positive. This 

would imply that side A escalates a conflict. However, the true reaction curve slope 

coefficient is negative, 𝛼𝛼1 =  −0.1, which is a de-escalatory position. We refer to this as sign 

flippage. We provide additional breakdowns and intuition in the appendix. 

 

5 Simulations 

We develop a simulation to study how calendar time may distort VAR estimates using 

realistic data. Section 4.1 introduces the simulation setup and Section 4.2 showcases how a 

VAR analysis may lead to erroneous conclusions when behavior occurs in action time. 

5.1 Simulation setup 

We first provide functional forms to duration and response functions. The response follows a 

normal distribution, and the waiting follows an exponential distribution: 
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𝑑𝑑𝑖𝑖|𝑧𝑧𝑖𝑖,𝑑𝑑𝑖𝑖−1  ∼  𝑁𝑁(𝛼𝛼0𝐵𝐵   +  𝛼𝛼1𝐵𝐵 𝑑𝑑𝑖𝑖−1  +  (𝛼𝛼0𝐴𝐴 − 𝛼𝛼0𝐵𝐵)  𝑧𝑧𝑖𝑖−1  +  (𝛼𝛼1𝐴𝐴 − 𝛼𝛼1𝐵𝐵)𝑧𝑧𝑖𝑖𝑑𝑑𝑖𝑖−1,𝜎𝜎2) 

𝑤𝑤𝑖𝑖|𝑑𝑑𝑖𝑖, 𝑧𝑧𝑖𝑖 ∼ exp �
1
𝜆𝜆
� 

ℎ(∗) = 𝐼𝐼(∗) 

where h() = I() implies that each action is instantaneous. In practice, the optimal number 

of lags may be more than one and can be empirically tested. We limit our simulation to one 

lag to clearly isolate the effects of temporal aggregation. We then estimate the simulations 

using the following parameters: {𝛼𝛼0𝐵𝐵,𝛼𝛼1𝐵𝐵,𝛼𝛼0𝐴𝐴,𝛼𝛼1𝐴𝐴,𝜎𝜎2} =

 {0.0056, 0.1354, 0.0078,−0.7404, 0.1}. We generate 15,000 actions per simulation. 

Multiple functional forms have been proposed to model the time between financial 

transactions (Pacurar 2008). We opt to use a basic exponential distribution with a constant 

parameter 𝜆𝜆. While an abstraction from reality, the modeling assumption allows us to 

concisely isolate the effect of shorter or longer wait times. We also assume that actions occur 

instantaneously. 

Finally, the action time data is transformed to calendar time data following Equation (8). 

We evaluate VAR performance on three metrics: 

Optimal VAR lag length: We determine optimal lag length using the Bayesian 

Information Criterion assuming a constant optimal lag length for both sides per 

simulation run. We set 𝜆𝜆 ∈  {. 5,1,2, … ,7}. Intuitively, we allow the average response 

time to vary between a half day, then from a day to a week. 

VAR coefficient and significance: Based on the optimal lag length, we estimate a 

VAR at the daily level following Equation (10). We then report the coefficients and 
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standard errors. We set 𝜆𝜆 =  7,1, 1
2
, corresponding to sides waiting, on average, one 

week, one day, and half a day between actions. 

Impulse Response: We plot the empirical impulse responses for each side three 

weeks after an initial shock with 95% confidence intervals. We set 𝜆𝜆 =  7,1, 1
2
, 

corresponding to sides waiting, an average, one week, one day, and half a day between 

actions. 

We repeat this exercise 1,000 times for each 𝜆𝜆 value for 6,000 total simulation runs. 

5.2 VAR findings 

We first investigate how a VAR performs in this setting using Equation (10) by estimating 

the optimal lag length based on the BIC criterion, the coefficient estimates, and orthogonal 

impulse responses. 

Table 1 shows the BIC-optimal lag lengths compared to varying values of λ. As the 

average response time increases, the optimal lag length increases, nearly one-to-one. The 

variance also increases as the average response time increases. This is a biproduct of the 

exponential variance equals the mean. 
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Table 1 Optimal BIC over Monte Carlo Simulations with varying lag length. 

Response Time Average BIC Minimum BIC Median BIC Maximum BIC 

0.5 1.0 1 1 1 

1.0 1.9 1 2 2 

2.0 3.1 2 3 4 

3.0 4.2 3 4 6 

4.0 5.2 4 5 7 

5.0 6.0 5 6 8 

6.0 6.8 5 7 9 

7.0 7.5 6 8 10 

Note: The simulation is repeated 1,000 per response time. 

 

Even though each side responds to the previous action, each VAR coefficient estimate is a 

linear combination of the underlying action time parameters. Longer waiting periods cause 

larger scalars for each action time coefficient leading to a BIC suggesting more lags. 

Figure 4 plots the percent of simulations for each lagged VAR coefficient which are 

statistically significant at the 5% level. The left-hand side plots the coefficients when the 

outcome is Player A’s action, while the right-hand side plots coefficients for player B’s 

action. Each row showcases a different simulation specification. The top row assumes each 

side waits, on average half a day before responding, the middle assumes a full day, and the 

bottom assumes a full week. 
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Each dot represents the percent of lagged coefficients statistically significant at the 5% 

level. For example, the second red triangle in the top left-hand panel indicates that Player 

B’s action two days ago was statistically associated with Player A’s action today for 100% 

of the simulations when the wait time was a day.  
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Figure 4 VAR coefficients over 1,000 Monte Carlo Simulations for players A and B. 
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The wait time, W, affects the percent of statistically significant lags. When the wait time is 

less than a day, only the first few lags are statistically significant for most of the simulations. 

As the wait time increases, the number of statistically significant lags increase. When the 

wait time is on average seven days, coefficients on the opposite side’s previous days are 

statistically significant over the past two weeks. Moreover, the own-lagged values are also 

statistically significant more than 5% of the simulations eight lags back. This highlights how 

calendar time VAR coefficients are a linear combination of the action time parameters. 

Finally, Figure 5 plots orthogonal impulse response functions over 1,000 Monte Carlo 

simulations. The top left-hand panel maps Player A’s response to a shock to Player B’s 

action 21 days after the shock when the average response time is 1
2
, one, five, and seven. The 

bottom three panels present the same for A’s response to a shock to B. 

The first period following a shock is statistically different from zero for all waiting periods 

for both A and B’s empirical responses using 95% confidence intervals. The empirical 

response effects quickly die out when the response time is one day or less on average. Less 

than 5% of the simulations identified a statistically significant effect at the 5% level four 

periods after the shock or after. Assuming an average wait time of five days, the A empirical 

response is statistically significant at the 5% level for 16 of the time periods after the shock. 

The B player empirical response is statistically significant at the 5% level more for 18 

periods after the shock. The impulse response statistically differs from zero more than 5% of 

the time for every lag studied when the wait time is increased to seven days on average. 
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Figure 5 Simulated Orthogonal Impulse Response Function. 
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The simulations highlight potential challenges to analyzing calendar time data. Standard 

regression tools can suggest prolonged responses even when the underlying action time 

responses resemble a tit-for-tat strategy, with only immediate response. 

6 Empirical example: Temporal aggregation and the Israeli-

Gaza Conflict from 2007-2017 

How much of the long impulse response functions presented in Section 2 can be explained 

exclusively by temporal aggregation? Using the five-minute report data from the Israeli-

Gaza conflict, we first create action time data. We then estimate 𝑅𝑅  following a Markov one 

process and calculate the P matrix from the data. Daily level data is simulated 1,000 times 

from empirically estimated reaction curve 𝑅𝑅 and 𝑃𝑃, and VAR/IRF analysis is performed on 

each dataset. 

We vary 𝑃𝑃 to include all actions, only actions that occurred within one day, and only 

actions that occur over multiple days. Simulating over all actions allows us to investigate 

how data aggregation contributes to the estimated prolonged responses. Simulating only 

daily actions with varying wait times and multi-day actions with a daily response helps us 

identify which temporal aggregate contributes more to prolonged impulse responses in this 

setting. 
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6.1 Setup 

We convert five-minute attack reports into actions using a simplified version of the 

Berman et al. (2024) approach. The authors use action time data to estimate Israeli and 

Gazan response curves from 2007 to 2017, omitting the Cast Lead, Pillar of Defense, and 

Protective Edge major operations. They transform the UN-reported five-minute attack data 

into a sequence of actions based on time between attacks, munitions used, and location. 

Attacks are organized in chronological order, ignoring location. An action is a sequence of 

attacks by one side i) uninterrupted by the other side’s attack and ii) with less than 48 hours 

between attacks. These coding rules assume that both sides perform coordinated attacks over 

time and across munitions. They also assume that both sides have the capabilities to respond 

within two days to the other side’s action.10  Finally, we add two actions where no damage 

occurs, which we refer to as zero damage action, for every 48 hours of calm. This captures 

each side’s choice not to respond. 

These transformations create a dataset where the unit of observation is an action. The 

dataset includes an indicator if the Israelis executed the action, the expected damage as 

described in Section 2, the days an action occurred, and what percent of the action occurred 

each day. 

Table 2 presents action-level statistics for Israel and Gaza. Because of the sequential 

setup, Israel performs 4,451 actions while Gaza performs 4,450 for a total of 8,901 actions. 

 
10 See Berman et al. (2024) for more discussion. 
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Both sides perform zero damage actions between a fifth to a fourth of the total actions. Both 

sides take just under half a day to respond on average and responded after at least a day 

under 10% of the time. Israeli actions lasted just over half a day on average, while Gazan 

actions tend to last just under a day. Finally, Israeli actions tended to cause more damage. 

The average Israeli action caused 0.521 expected damage (measured in fatalities + . 8 × 

casualties), while the Gazans cause 0.0216 in expected damage. 
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Table 2 Action-level summary statistics 

Variable Gaza Israel 

Number of Actions 2,952 2,953 
Proportion Zero Damage Actions 0.36 0.30 
Average Days Between Actions 0.65 0.65 
Proportion Days Between Actions Longer than One Day 0.10 0.10 
Average Length of Actions (days) 0.53 0.88 
Average Number of Attacks per Action 1.30 2.35 
Proportion Actions Longer than One Day 0.11 0.16 
Predicted Damage 0.03 0.21 

 

Next, we approximate the expected damage conditional expectation function following 

Equation 3: 

𝑅𝑅(𝑑𝑑𝑖𝑖|𝑑𝑑𝑖𝑖−1, 𝑧𝑧𝑖𝑖) = 𝑑𝑑𝑖𝑖 = 𝛼𝛼0𝐺𝐺 + (𝛼𝛼0𝐼𝐼 − 𝛼𝛼0𝐺𝐺)𝑧𝑧𝑖𝑖 + 𝛼𝛼1𝐺𝐺𝑑𝑑𝑖𝑖−1 + (𝛼𝛼1𝐼𝐼 − 𝛼𝛼1𝐺𝐺)𝑑𝑑𝑖𝑖−1𝑧𝑧𝑖𝑖 + 𝜖𝜖𝑖𝑖   

 

 where 𝑧𝑧𝑖𝑖 = 𝐼𝐼(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖). We limit our estimation to a single lag linear 

regression to isolate the effects of potential time aggregation.  

Table 3 presents the results. Both Israel and Gaza have positive intercept and positive 

slopes. The Israelis appear to respond to Gazan attacks, while we fail to find evidence the 

Gazans respond linearly to the Israelis.  

We next calculate the 𝑃𝑃 matrix directly from the data. We identify how many days occur 

before each action, and how many days an action span. We calculate 𝑝𝑝𝑖𝑖,𝑡𝑡  as the percent of 

action i’s damage on day t divided by the total damage. For example, if action 𝑖𝑖 occurred 

over days 𝑗𝑗, 𝑗𝑗 +  1 and 𝑗𝑗 +  2 causing 0.1, 0.2, and 0.3 expected damage, then 

�𝑝𝑝𝑖𝑖,𝑗𝑗,𝑝𝑝𝑖𝑖,𝑗𝑗+1,𝑝𝑝𝑖𝑖,𝑗𝑗+2� = �1
5

, 2
5

, 3
5
�. 
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Together, we can calculate the daily level time series as: 

𝐷𝐷𝐼𝐼  =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍)𝐷𝐷 

𝐷𝐷𝐺𝐺   =  𝑃𝑃(𝐼𝐼 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑍𝑍))𝐷𝐷 

where 𝐷𝐷𝐼𝐼  is a vector of daily level predict damage to Gaza (caused by Israel) and 𝐷𝐷𝐺𝐺  is 

daily level predicted damage to Israel (caused by Gaza). 

Table 3 Estimated Israeli-Gaza Response Curves 

 (1) (2) 

𝛼𝛼0𝐺𝐺  0.034*** 
(0.001) 

0.034*** 
(0.001) 

𝛼𝛼1𝐺𝐺   0.003 
(0.002) 

𝛼𝛼0𝐼𝐼  
0.214*** 
(0.008) 

0.191*** 
(0.009) 

𝛼𝛼1𝐼𝐼  
 

0.634*** 
(0.148) 

 

Observations 5905 5901 

Standard Errors HAC HAC 

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
Notes: outcome is expected damage. Fitted values from regressing 
deaths + .8 x fatalities on munitions type. We drop the first action in 
the dataset and the first action following each major operation. 
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6.2 Simulation 

We simulate 3,000 daily level datasets using the model described above. Algorithm 1 

summarizes the steps. 

 
Algorithm 1: Simulating Israeli-Gazan violence. 

 
Result: VAR and IRF simulation estimates Using action level data; for i in (all 

actions, daily actions, and multi-day actions with daily waits) do 
for 𝑠𝑠 =  1,2, … ,1000 do 
Simulate Ds using column 3 in Table 3 for 8,901 actions. ϵi is drawn from the 
empirical residuals; 
Simulate Ps by drawing 8,901 actions with replacement following i; 

Generate 𝐷𝐷𝐼𝐼,𝑠𝑠  =  𝑃𝑃𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑍𝑍)𝐷𝐷𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝐺𝐺,𝑠𝑠  =  𝑃𝑃𝑠𝑠(𝐼𝐼 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑍𝑍))𝐷𝐷s; 

Estimate optimal lag length VAR (up to 14 lags) and IRF 25 periods after the initial 
shock; 

Save results 
end 

end 

 
 

The data is first generated at the action level. Damage is generated using Table 3, column 

3. We then draw strategic behavior, which includes the wait time before an action begins, 

how many days it occurs and the distribution of the days. We first draw from all possible 

actions, then limit the simulations to daily actions and multi-day actions. Finally, the 

simulated action level data is transformed to daily level data, then standard regression 

analysis is performed. We repeat this process 3,000 times. 
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6.3 Results 

Figure 6 presents the rejection frequency over 1,000 simulations. The column headers 

identify the outcome, while the row labels indicate whether all the actions, daily actions, or 

multi-day actions were used to simulate the data. The green squares represent coefficients 

for lagged damage to Israel (Gazan actions) while the blue value represent the lagged 

damage to Gaza (Israeli actions).11  

 
11  As an example, focus as the top left panel. It shows the percent of simulations the coefficients are 

statistically significant when regressing Gazan action on lagged actions using all actions. The first green 
square in the top left panel shows that the previous Gazan action is statistically significant nearly all the 
simulations. The first blue triangle in the top left-hand panel shows that the previous Israeli action is 
statistically significant in nearly three quarters of the simulations. 
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Figure 6 Percent coefficients significant from 1,000 Monte Carlo simulations. Coefficients 

calculated using VAR at daily level. 

Focusing first on the top row, lagged coefficients tend to be statistically significant at least 

the first five lags. Lagged damage to Israel actions are statistically significant for both Israeli 

and Gazan actions. The lags coefficients in the Israel regression (top-right hand panel) tend 

to remain statistically significant for the first seven lags, while previous damage to Gaza 

remains significant the first four. 

The prolonged significant lags are mostly driven by the multi-day actions. The bottom 

row simulates the data only using multi-day actions. The lagged coefficients remain 

statistically significant at a higher rate compared to using all actions. In comparison, daily 

actions with strategic timing does not lead to many significant lagged coefficients. This 

suggest that temporal aggregation may bias point estimates. Furthermore, this bias is driven 

by multi-day actions, not strategic waiting, in this context. 

We next turn our attention to the simulated impulse response functions. Figure 7 plots the 

average Gazan (left hand side) and Israeli (right hand side) impulse response functions 

simulating from all the actions, only daily actions, and only multi-day actions. As before, the 

top row plots the percent of impulse responses significant at the 5% level using all actions, 

the middle using only daily actions, and the bottom using multi-day actions. We show the 

IRF magnitudes in Figure A7. 
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Figure 7 Percent IRFs significant at 95% level from 1,000 Monte Carlo simulations. Initial 

shock based on estimated standard deviation from each simulation. 
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The model recreates prolonged impulse responses for Israel using all actions, but not 

Gaza. Averaging over all action simulations, the Israeli impulse response remains 

statistically significant over 5% of the time for all 25 periods. The Gazan impulse response 

shows signs of statistical significance within the first week, then dies out. The effect again is 

driven by the multi-day actions. Impulse responses generated by daily data exhibit strong 

reactions in the first one to two days but die out quickly. 

Temporal aggregation can cause statistically significant lagged coefficients and prolonged 

impulse responses through strategic waiting and multi-day actions. Our findings suggest that 

temporal distortion in the Israeli-Gazan context is driven primarily from multi-day actions. 

7 Conclusion 

Estimating a player’s reaction curve during strategic interactions is important for both 

academics and policymakers. We show that if the underlying nature of a conflict is not 

considered, then standard econometric practices can lead to misleading results. In our 

examples, we assume that two players engage in a sequential game with varying response 

times, and responses that can last days. Applying standard regression techniques to 

temporally aggregated data, e.g., aggregated in days, rather than to the sequence of actions, 

can generate misleading coefficient estimates and impulse response analyses. 

When we take these insights to the Israeli-Gaza conflict between 2007 and 2017, we find 

evidence that response times are especially influenced by multi-day actions. Researchers 

studying the conflict using data aggregated to days may well infer that responses are long 

and drawn out, when they may be better described as responses to the previous action. 
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Our findings can be summarized as follows: study strategic action at the unit of behavior, 

not predetermined intervals. If a researcher has data in action time, they should prioritize 

performing analysis with it. If they have data in calendar time, then they should try to 

convert it to action time before modeling response curves. Studying strategic behavior in 

calendar time, instead of action time, can meaningfully distort our understanding of actors’ 

strategies.  
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A Appendix 

A.1 Additional VAR Results 

Table A1 Reduced form VAR findings 

  
Predicted Damage to 

Gaza 
Predicted Damage to  

Israel 
Predicted Damage to Gaza, Lag1 0.345*** 0.003*** 

 (0.017) (0.0004667) 
Predicted Damage to Israel, Lag1 1.953** 0.380*** 

 (0.619) (0.017) 
Predicted Damage to Gaza, Lag2 0.326*** -0.002*** 

 (0.018) (0.0004852) 
Predicted Damage to Israel, Lag2 3.787*** 0.187*** 

 (0.658) (0.018) 
Predicted Damage to Gaza, Lag3 0.107*** 0.001+ 

 (0.019) (0.001) 
Predicted Damage to Israel, Lag3 -1.504* 0.073*** 

 (0.668) (0.018) 
Predicted Damage to Gaza, Lag4 0.052** -0.000113 

 (0.019) (0.001) 
Predicted Damage to Israel, Lag4 0.505 0.089*** 

 (0.670) (0.018) 
Predicted Damage to Gaza, Lag5 0.092*** 0.002*** 

 (0.019) (0.001) 
Predicted Damage to Israel, Lag5 -1.258+ -0.046* 

 (0.672) (0.018) 
Predicted Damage to Gaza, Lag6 -0.170*** -0.001 

 (0.018) (0.001) 
Predicted Damage to Israel, Lag6 -2.005** -0.030 

 (0.671) (0.018) 
Predicted Damage to Gaza, Lag7 0.027 -0.002*** 

 (0.019) (0.001) 
Predicted Damage to Israel, Lag7 2.053** 0.074*** 

 (0.668) (0.018) 
Predicted Damage to Gaza, Lag8 0.098*** -0.002** 



 

1 

 (0.019) (0.001) 
Predicted Damage to Israel, Lag8 -3.761*** -0.040* 

 (0.668) (0.018) 
Predicted Damage to Gaza, Lag9 0.112*** 0.002*** 

 (0.018) (0.001) 
Predicted Damage to Israel, Lag9 0.618 0.065*** 

 (0.670) (0.018) 
Predicted Damage to Gaza, Lag10 0.113*** 0.001* 

 (0.018) (0.001) 
Predicted Damage to Israel, Lag10 0.447 0.001 

 (0.671) (0.018) 
Predicted Damage to Gaza, Lag11 0.094*** 0.001* 

 (0.019) (0.001) 
Predicted Damage to Israel, Lag11 2.296*** -0.018 

 (0.669) (0.018) 
Predicted Damage to Gaza, Lag12 -0.090*** -0.002** 

 (0.019) (0.001) 
Predicted Damage to Israel, Lag12 -0.974 0.009 

 (0.668) (0.018) 
Predicted Damage to Gaza, Lag13 -0.176*** -0.002*** 

 (0.017) (0.0004788) 
Predicted Damage to Israel, Lag13 3.506*** -0.003 

 (0.658) (0.018) 
Predicted Damage to Gaza, Lag14 -0.097*** 0.0004135 

 (0.017) (0.0004613) 
Predicted Damage to Israel, Lag14 -1.170+ 0.017 

 (0.619) (0.017) 
Intercept -0.005 0.004*** 
  (0.033) (0.001) 
Observations  (Days) 3,822 3,822 
Average Outcome 0.54 0.02 
R2 0.776 0.497 
R2 Adj. 0.774 0.493 
NOTE: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Optimal lag length chosen using BIC between 1,2,…, and 
14 lags. 
  

 

 

 



 

2 

 

 

 

 

 

 

Table A2 Reduced form VAR findings using daily fatalities 

  Israelis Killed Gazans Killed 
Israelis Killed, Lag 1 0.032+ 3.965*** 

 (0.017) (0.650) 
Gazans Killed, Lag 1 0.002*** 0.240*** 

 (0.0004188) (0.016) 
Israelis Killed, Lag 2 0.058*** 3.970*** 

 (0.017) (0.651) 
Gazans Killed, Lag 2 -0.001 0.163*** 

 (0.0004283) (0.017) 
Israelis Killed, Lag 3 -0.017 1.403* 

 (0.017) (0.653) 
Gazans Killed, Lag 3 0.0004889 0.130*** 

 (0.0004334) (0.017) 
Israelis Killed, Lag 4 0.048** 0.395 

 (0.017) (0.652) 
Gazans Killed, Lag 4 -0.001* 0.043* 

 (0.0004350) (0.017) 
Israelis Killed, Lag 5 -0.002 3.295*** 

 (0.017) (0.650) 
Gazans Killed, Lag 5 -0.0003594 0.010 

 (0.0004306) (0.017) 
Israelis Killed, Lag 6 0.018 1.575* 

 (0.017) (0.650) 
Gazans Killed, Lag 6 -0.001 -0.062*** 

 (0.0004282) (0.017) 
Israelis Killed, Lag 7 -0.027 -0.523 

 (0.017) (0.650) 
Gazans Killed, Lag 7 0.001* 0.022 
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 (0.0004290) (0.017) 
Israelis Killed, Lag 8 0.012 -2.286*** 

 (0.017) (0.650) 
Gazans Killed, Lag 8 0.003*** 0.070*** 

 (0.0004287) (0.017) 
Israelis Killed, Lag 9 -0.029+ -2.033** 

 (0.017) (0.651) 
Gazans Killed, Lag 9 -0.001** 0.139*** 

 (0.0004317) (0.017) 
Israelis Killed, Lag 10 -0.043** 3.323*** 

 (0.017) (0.650) 
Gazans Killed, Lag 10 0.003*** 0.071*** 

 (0.0004353) (0.017) 
Israelis Killed, Lag 11 -0.032+ 2.023** 

 (0.017) (0.652) 
Gazans Killed, Lag 11 -0.0001741 -0.012 

 (0.0004331) (0.017) 
Israelis Killed, Lag 12 -0.030+ -3.096*** 

 (0.017) (0.649) 
Gazans Killed, Lag 12 -0.002*** 0.035* 

 (0.0004252) (0.017) 
Israelis Killed, Lag 13 -0.012 5.405*** 

 (0.017) (0.650) 
Gazans Killed, Lag 13 -0.001** -0.102*** 

 (0.0004123) (0.016) 
Intercept 0.007** 0.054 
  (0.002) (0.090) 
Observations  (Days) 3823 3823 
Average Daily Fatalities 0.009 0.842 
R2 0.064 0.442 
R2 Adj. 0.058 0.438 
NOTE: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Optimal lag length chosen using BIC 
between 1,2,…, and 14 lags. 
 

 

A.2 An example for Section 3.2 
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Figure A1: Graphical example of actions recorded at pre-specified time intervals. 

Figure A1 provides a graphical illustration of six instantaneous actions over ten days when 

the time interval is always shorter than the response time.12 Suppose Player A and Player B 

are observed over 10 time-units (e.g. days). Within each unit, a player may perform an 

action causing positive damage or wait to perform an action. The black circle represents an 

action, and empty slots represent waiting. In this example, Player A first inflicts positive 

damage to Player B over two days (t = 1 and t = 2). Player B then waits two time periods 

and attacks Player A (t = 4). Player A then attacks inflicting positive damage at t = 6, 

leading to a retaliation from Player B followed by further attacks from Player A. 

The example highlights that studying the sequential game in arbitrary time intervals can 

cause the lag structure to differ across actions. Even though Player B’s first and second 

actions (e.g. t = 4 and t = 7) are reacting to Player A’s previous action, Player B is reacting 

to the third lagged time in their first action (t = 1) and first lagged time period in the second 

action (t = 6). We refer to the mapping between recording actions at the action-level and 

time-interval level as the data aggregation process. 

 
12 Mathematically, 𝑤𝑤𝑖𝑖  ≥  1 ∀𝑖𝑖. 
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We present the example mappings in matrix form of Player A: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑍𝑍) =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛼𝛼 0 0 0 0 0

1 − 𝛼𝛼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

where the ones are bolded for easier reading. The waiting periods lead to many rows of only 

zeroes. This is one of three data distortion from aggregating to arbitrary time intervals. The 

second is many actions occurring in one day. This is represented by rows having multiple 

actions. 

Finally, an action may be spread over multiple days. This is represented by a column 

having two nonzero entries, but that add to unity. For example, side A’s ith action (like a 

shelling campaign) may begin on day t and conclude on t + 1. If they dropped a third of their 

bombs on t and the rest on t+1, then the [t,i] entry for PZ is    and   for [t+1,i]. 

A.3 Additional parameter decomposition for Section 3.3.1 

Equation (12) shows that each 𝛽𝛽 is a linear combination of α, where each scalar term is 

unbounded. Formally and without loss of generality, 𝛽𝛽𝑏𝑏,𝑗𝑗
𝐴𝐴 = ∑ 𝜐𝜐(1+𝑘𝑘+𝑗𝑗),p𝛼𝛼𝑝𝑝4

𝑗𝑗=1
 
 .  
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Figure A2: VAR decomposition under different action-level response curves  
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Figure A2 decomposes each 𝛽𝛽 slope coefficient between the 𝛶𝛶 values. The x-axis plots the 

υ value multiplied by α0 for all the 𝛽𝛽 coefficients, while the y-axis does so for 𝛼𝛼1. The 

panels correspond accordingly to the panels in Figure 3. Most slope coefficients are a 

combination of both the slope and the intercept. Previous B action scalars (depicted in blue) 

are positive in Panels A and C, but less than one. The scalars become smaller with more 

lags, highlighting the diminishing effects of previous lags. Conversely, previous A actions 

tend to receive negative weights on both the slope and intercept in Panels A and C. The 

coefficients in Panel B tend to have larger slope scalars than intercept scalars, in line with 

the intercept being null. 

 

The decomposition highlights two points. First, the time-space 𝛽𝛽  slope parameters are a 

linear combination of all the action-space α parameters. The VAR estimates capture a mix of 

the slope and intercept for both sides A and B. Second, the scaling terms are, without further 

assumptions, unbounded. Therefore, the 𝛽𝛽 slope parameters may be amplified, attenuated or 

even switch signs. Sign flippage can even occur if all the action-space α coefficients are 

positive because the scaling terms need not be positive. 

A.4 Additional Estimation for Section 4.2 

Figure A3 plots the average VAR coefficients over the simulations. The optimal lag length 

is identified using BIC for each simulation, then estimated. The points show the average 

coefficient estimate per lagged value. The 95% confidence intervals use the average 

standard error over the average response time simulations. 
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Figure A3: VAR coefficients over 1,000 Monte Carlo Simulations for players A and B. 
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Recall Player A’s action-level response curve is 0.01 +  −0.74 𝑑𝑑𝑖𝑖−1, implying a negative 

slope. In all three iterations, the coefficients on Player B’s past actions are nonpositive. 

When the response time is shorter (i.e. 1 day), the lagged coefficients beyond four periods 

tend to be economically and statistically insignificant. Additionally, the magnitudes tend to 

be much smaller than the action-level slope. Player B’s lagged actions also remain 

statistically significant well beyond the average response times. The time distortion may 

lead a researcher to erroneously attribute Player A’s previous actions in determining future 

reactions. 

Conversely, Player B’s action-level response curve had a positive slope. In all three 

simulation iterations, Player A’s lagged daily actions are nonnegative. Player B’s own 

lagged daily actions tend to be negative, but statistically insignificant. Together, these 

simulations highlight how longer response times create a facade of prolong reactions. 
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A.5 Additional Facts and Figures for Section 5 
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Figure A5: Optimal VAR lag length over 1,000 Monte Carlo simulations using Bayesian 

Information Criterion. 
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Figure A6: Coefficients from 1,000 Monte Carlo simulations. 

 

Figure A7: Average IRFs from 1,000 Monte Carlo Simulations. Initial shock removed from 

graph. Initial one standard deviation shock varies based on estimated standard 

error. 
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