

I IGCC ESSAY

How to Write an Academic Article in Political Science

David A. Lake*
November 2025

About the Authors

David A. Lake is distinguished professor of the graduate division at the University of California, San Diego and a senior fellow at IGCC.

Note

Earlier versions of this post were written with Mathew D. McCubbins. I have substantially modified this advice over the years but am indebted to Mat for his many contributions and insights that carry over into this draft.

Suggested Citation

Lake, David A. 2025. *How to Write an Academic Article in Political Science*. IGCC Essay. escholarship.org/uc/item/6qc4782w

While each paper may be unique, the process of writing an academic paper is not (or does not have to be). There is a formula for writing a scientific article in Political Science. The structure of a paper is not where one innovates. Reviewers (and later readers) look for the parts of a paper in a standard order. Make finding what they are looking for easy. In the hopes of helping to make the process more efficient and the final products more clear, concise, and convincing, the formula is provided here. Use it as you see fit. But first, some fundamentals.

Step One: The Point

What is the point—your contribution? You are only allowed one. Save additional points for other papers.

- 1. In an ideal world, you should be able to state your point in one sentence before you begin writing. This point then guides everything in the rest of your paper.
- 2. For many of us, it takes time and multiple drafts of a paper to formulate the point crisply and clearly. In this case, once you can identify your point, you must rewrite the paper from front-to-back to ensure that each and every sentence contributes to the point. You must delete all "vestigial organs" that do not contribute to the point; though an idea or tangent might have been influential to you in identifying the point, this does not mean it should be in the paper. Once your point is clear, you must be ruthless in excising any extraneous material. This is why we write multiple drafts of most papers.
- 3. In many cases, the point only becomes clear through public presentations. You literally see when listeners "get it." Equally, you see where they don't through confused faces and the questions that follow. A common problem is that you've thought so much about your paper that its clear to you but not to others who do not share your fascination. To succeed in most cases, you need to attract readers beyond the perhaps handful of specialists on your topic. Distilling your point so that it is clear to others takes practice and repetition.

Step Two: The Argument

- 1. What is your argument or explanation? Your point in step one is your conclusion here. This is also a precisely formulated description of how you support your point developed in step one. On what basis do you claim to make your point?
- 2. When in doubt, "draw it out": flow charts, game trees (even if not solved), etc. are often helpful in clarifying your argument (but this does not mean they should be included in the paper).

Step Three: The Purpose

- 1. If the goal of your paper is to develop a theory, then your purpose is to demonstrate the plausibility of your assumptions and the deductive validity of your argument. To demonstrate the plausibility of their assumptions, authors will often simply cite others who have made the same assumption (often in game theoretic proofs, for example). However, if you are going to be developing a new theory or refining an existing theory in a novel way, you may need to go beyond providing citations.
 In theories, even though the premises are supposed to be true or plausible, often they are complex and novel. Indeed, many of the most important theories are based on novel assumptions which, after they are stated, become conventional wisdom.
- 2. If it is an empirical paper, your purpose can be (a) an exploration of your explanation, (b) a counterexample to someone else's explanation, (c) a correlation derived from your explanation, or (d) a test of your explanation.

extensive case studies or data analysis to demonstrate plausibility.

So, for the novel premises in your theory you need to provide evidence that your premises are plausible. While this is often done through citation, it may require

- a. Exploration: Usually this involves case studies, though it may include a descriptive analysis of a larger set of data. Basically, exploration is a tour of your data, with your theory as a guide. There are no tests or correlations undertaken, at least not ones derived from your theory. The idea of an exploration is to demonstrate that your theory is plausible. Explorations may also be carried out to validate measures of variables draw from your theory (i.e., to demonstrate that your measure is a valid representation of your theoretical construct).
- b. Counterexample(s): There is a theory (usually someone else's) with an exactly specified prediction/hypothesis. You have a case study, experiment, or data analysis that involves an exact construct derived from the theory and a test of relationships given by the theory and you show the theory to be false. If so, you need to suggest, in the end, what might replace the false theory (you can't replace something with nothing). Note well: do not transform the theory you are testing into a straw person because this only gives proponents of the original theory an opportunity to debunk your analysis. Be fair in stating the theory and your empirical critique.
- c. **Correlation:** Your theory defines a comparative static—changes in *x* lead to changes in *y*. You can assess this prediction with many different statistical techniques, but it remains essentially a correlation. Assessing comparative static implications through correlation is still mostly what we do in political science. Here, you need to control for alternative explanations as well as you can, once again avoiding straw person analyses.

d. **Test:** you have either a randomized "true" experiment or a quasi-experiment. In either case, you need to defend your construct validity and your design. In causal tests you need to have at least two groups or both a pre- and post-test, otherwise you have a relational or correlational study. Specify both explicitly.

A note on the scientific method:

Figuring out the answers to the questions posed in steps 1–3 can be approached systematically. That is, we can follow the scientific method by the following steps:

- Observe an event or pattern in the real world—ideally the event or pattern is a
 "puzzle," an observation that is not well explained by existing theories
- Explain/hypothesize, often starting with an intuition but eventually leading to a theory that is not limited to the initial observation
- Construct a test if possible; if not, then a larger correlational study
- Conduct a test/correlational study
- Draw inferences
- Update (beliefs about) the explanation/argument

For example, an exploration adds to the state of knowledge (i.e., the literature) by contributing at the explanation stage, as does a purely theoretical paper; by contrast, a counterexample or an empirical test of existing theories contributes at the construct/conduct/update stages. Ideally, your paper will contribute at each stage.

Further, it is important to remember that figuring out the first three steps:

- is distinct from the process of writing the paper;
- should be completed before you start writing;
- usually consists of doing things in a different order than they are presented in the paper.

Step Four: Sitting Down to Write

Write your paper in sections as follows:

- 1. Introduction: This should be one page or three paragraphs long. It should be no longer than six paragraphs, and always less than three pages. You should have no or few citations. Your first paragraph states the puzzle/dilemma to be solved or question to be answered. The second paragraph summarizes the two sides in the literature about this puzzle/dilemma/question. The third paragraph summarizes your answer and gives a one sentence "map" of what you are doing in this paper.
- 2. Literature Review: In two pages or less you cite evidence for the puzzle or question you address. This usually involves citations from the literature, but it may involve actually building the case empirically (in which case, give yourself three pages for this section). Then outline the major analogies used to address the puzzle/question, with group citations, led by the major works.
 - You should always identify "schools of thought" in any debate; group related papers into these schools and discuss as a class, rather than as individual works. Even on topics where the existing literature is thin, avoid framing the arguments in terms of specific works but connect the relevant articles to broader intellectual traditions/analogies of which they are part. You do not need to discuss every article on your topic! This section is where you make the case for your paper being an important part of the debate in the literature. There are two sides in every debate. Discuss the literature this way, divide it into two sides. You are adding to one side or starting an entirely new third approach.
 - a. Alternative Introduction with Literature Review: Increasingly, and especially if you are writing on a well-known debate in your field, you can skip the formal literature section and incorporate the summary into the Introduction. In this case, the literature review should be short—just several paragraphs—and precedes the third paragraph noted above in which you cite your answer to the puzzle. This organization works only if the puzzle and debate in the literature is relatively well-known and can be summarized briefly.
- 3. Your Theory Section: State your theory/explanation, sketched in step two above, beginning with your conclusion, going through your premises, and ending with a deductively valid conclusion. Make it as simple as possible and use as little jargon as possible. You want people to read it and get it, not just go "wow, look at all the cool math!" Use figures, models, analogies here. Indeed, the core point here is for people to understand, appreciate, and believe your core analogy about how the world works. That is what we are really arguing about.
 - a. **Note on analogies:** I've used this term several times and you may be unfamiliar with the concept. Many important theories are based on common analogies

that help readers grasp your point. A very good example is the McCubbins and Schwartz article on congressional

oversight that distinguished between police patrols (constant monitoring, looking for problems) and fire alarms (devising ways for affected parties to bring problems to the attention of Congress). You immediately get the idea and that the absence of congressional hearings and interrogations of bureaucrats does not mean that the legislature is not exercising oversight through fire alarms. A second example is principal-agent theory, originally used to theorize relations between managers

and workers and shareholders and owners, but is now applied to voters and representatives, states and international organizations, etc. Analogies are useful to generalize ideas for yourself and to communicate those ideas to your audience.

4. Your Hypotheses/Predictions. Next derive your hypotheses from your theory above. These derivations must also be deductively valid or there can be no testing of your theory. This is the first spot where most people fail to conduct a test. You must show clearly how your hypotheses follow from your theory. Listing and justifying hypotheses can either follow at the end of your theory section or, if demonstrating deductive validity takes some time, in a new section. Hypotheses must be falsifiable and are typically written in "if X, then Y" form.

5. Research Design:

- a. *Explain what you are doing here.* Tell the reader what is to follow. If you are conducting a correlation, show how your data analysis will demonstrate that if your theory is true, then this relationship must also be true. This approach provides a partial test, using comparative statics, termed a refutational challenge: that is, if you find the relationship doesn't hold, we can reject the theory, but if we find that it holds, we cannot accept the theory's hypotheses, as it wasn't a test. Often case studies are refutational challenges, they are almost never tests. You need at least one more case study than you have variables in your analysis! State your design explicitly and clearly. Be clear about your research design, and show that if you are conducting a test, how it is a valid test. This includes stating your method of analysis, including giving a regression equation if need be.
- b. Show your constructs and construct validity. Next you define how you are going to measure the relationships in your theory. You must prove, or make very plausible, that you have very good constructs for the variables and parameters in your theory. This always requires the use of more analogies to relate abstract theoretical constructs to real-world observable constructs. Be explicit, be precise, and provide a proof that your

observable constructs can be derived from the abstract constructs in your theory.

In an ideal case, you demonstrate convergent and discriminant validity for your measures. Although much of political science involves debates about which measure of a construct is "best," using multiple measures of the same construct is often the most convincing way of assessing your theory. If your results depend on a particular measure of, say, democracy, you do not have a very strong finding. You should show that results hold regardless of which measure you are using. It is sometimes helpful to present a correlation matrix of the various possible measures, showing how they all capture the same underlying construct (convergent validity). It is especially convincing if you can show that the measures of your key construct do not correlate well with measures of the next most closely related construct (discriminate validity) (see Lake 2009, Table 3.1).

- c. Describe your data. Define your variables and describe where they are from. Be explicit, so that anyone could go back and redo your work. If you dropped cases, explain why. If you were limited in your data collection, or the data is truncated, or whatever, explain it. Discuss any potential econometric concerns and how you resolved them or what to make of them if you did not resolve them.
- d. Present results. Present your results, interpreting them in light of your theory/hypotheses. Remember, you are testing your analogy, in fact you are testing a string of analogies, and you need not worry, at this point, about external validity. Marginal effects plots are typically the best way to present your substantive findings. Robustness checks are mostly reserved for your appendix.
- 6. **Discussion and Alternative Explanations:** After presenting evidence for your theory or argument, you must consider alterative explanations and, if possible, suggest how your results support your approach and the other(s). How and to what extent are alternative theories inconsistent with your results? What does your theory and evidence show that others do not? Why is your approach "better"? Refer here back to the literature review. The theories/approaches discussed there are your alternatives here. As always, be generous to the alternatives and avoid turning them into straw persons.
- 7. **Conclusion:** Here is where you worry about external validity, this is where you step back and limit your findings. You may anticipate criticisms here and provide counterarguments/evidence. Always conclude with a summary paragraph extolling what you did find, however. Remember, external validity relates to your theory not your findings.

General Guidance

- 1. Make sure you cite the major pieces in the literature, be generous. Make sure you have exact references.
- 2. Proofread. Proofread!!! Sloppy writing, in terms of spelling, grammar, punctuation, citations, style, formatting, or whatever, implies sloppy thinking and will reduce trust in everything you've done. Never send anything out that has writing errors, incomplete references, etc. Never send anything out where people have to guess what you were doing or why. At several points during the writing process, you should print out a hard copy of your paper and read it carefully. Text reads differently on paper than on the screen. Not only should you look for awkward sentence structures but be sure to read for typos. Common citation problems that make your paper look unprofessional include the following:
 - a. Author-date citations should include page numbers unless it is just a general reference. Missing page numbers suggests you were too lazy to look up the reference. These in-text citations should go at the end of the appropriate sentence (not in the middle) and are placed before any punctuation.
 - b. In author-date citations, page numbers follow the publication date when in the main citation, not at the end of a sentence. Write (author, date, page number) not (author date) text... (page number).
 - c. If using a reference program (Endnote, Zotero) and referring to an author by name in the text, write out the person's name and then omit the author's name in the citation: do not leave write "(author date, page) demonstrates..." or anything similar in your sentence. Instead, write "Author (date, page) demonstrates..."
 - d. Footnote numbers are placed at the end of a sentence and go after the punctuation.
- 3. When the paper is complete, you should first send it out to your close friends and colleagues to get comments. After satisfactorily revising your paper based on what worked and what didn't (in trying to get your point across), you should distribute the paper more broadly and present it at seminars and conferences. Feedback is important because we don't know which analogies and language will work in trying to convey our argument. That is, whenever we write, we assume a context or common understanding between the audience and ourselves. By getting feedback, you can update and learn more about which of the assumptions are correct, and which are not. Take all criticism as helpful, no matter how snippy or mean spirited. Be grateful that people took the time to read (or listen to) your work and provide comments.

Submitting Your Paper to a Journal

Many academic journals today have acceptance rates in the single digits. Revise-and-resubmit (R&R) invitations are handed our far more sparingly than previously. Only papers that have a simple and clear path to revision are now typically offered an R&R. This basically means you have one shot at any journal—make it count. While everyone is pressed to "publish or perish," you need to make sure your paper is as strong as you can possibly make it before submitting.

- 1. Your paper should be "letter perfect" when you submit it to a journal. Do not waste your or the reviewer's time on a rough draft or submit it "just to get comments." Maximize your chances of success and respect the reviewers and editor's time by only submitting work that is the best you can do. You don't get second chances. This also means that the paper should follow journal style guidelines and submission requirements. Review their individual requirements and follow them. Each journal may have spelling or style preferences (like British or American English or using a serial comma) or ask for figures to be submitted separately. Spend the time to submit your manuscript in their desired format to improve your chances of success.
- 2. After two to six months after submission, you can expect to receive an initial decision by the editor(s). This will typically include (a) guidance from the editor as to what they see as the important criticisms based on the reviews and (b) two to four reviews by scholars in the field. Read the reviews generously. No one knows your paper better than you. Reviewers read, often think briefly, then quickly write some comments. They most likely have not absorbed your brilliance (yet). The specific criticisms offered are often less important than figuring out why the reviewers did not see or accept your argument or evidence. While you might want to blame the reviewers, the fault is always yours because you did not explain yourself sufficiently. Yes, sometimes there really are critical errors and reviewers will certainly point them out. But more often you have to read between the lines to understand what you failed to communicate fully or clearly. When getting reviews, I look at the bottom line, get sad or annoyed as the case may be, and then read the reviews carefully the next day when I'm more ready to absorb the comments.
- 3. The expected response for any submission is rejection. If you get an R&R, no matter how critical, it's worth pursuing with that same journal. In all cases, take the reviews seriously and revise the paper before resubmitting by invitation or sending it to another journal. If there is value in the paper, do not give up. There is a certain stochastic quality to reviews, but they almost always identify similar problems and reach a similar conclusion. You are likely just wasting your time and can expect the same result. Revise seriously.